
1

2

TABLE OF CONTENTS

 HACKING 101: DISCLAIMER. .. 3

HACKING 101: INTRO .. 4

HACKING 101: WHO AM I .. 5

HACKING 101: BLUEPRINT ... 6

HACKING 101: NMAP .. 7

HACKING 101: PASSWORDS AND WORDLISTS ... 11

HACKING 101: BRUTE FORCE ATTACK ... 15

HACKING 101: HASH CRACKING ... 30

HACKING 101: THE WEAKEST LINK ... 39

HACKING 101: VULN SERVER 101 WALKTHROUGH .. 44

3

HACKING 101: DISCLAIMER

In the words of Beretta: “Don't do the crime, if you can't do the time - Yeah, don't do it.”

This book is for educational purposes only and the author does not promote illegal activities. This
book is in no way responsible for any misuse of the provided information. The author does not
promote illegal hacking, cracking, or software piracy. The purpose of this book is to teach offensive
techniques that can assist with discovering vulnerabilities and to help enhance defensive measures.

By using this book and / or the accompanying virtual machine, you agree that in no event will the
author be liable for any loss or damage including without limitation, indirect or consequential loss or
damage, or any loss or damage whatsoever arising from loss of data or profits arising out of or in
connection with the use of this information.

4

HACKING 101: INTRO

I’ve had a few encounters where someone has asked me how to get started with penetration testing
and at face value, the answer is simple – HACK THE PLANET. Or perhaps more specifically, hack
as much as you can to gain knowledge. But it’s not at face value and the answer is complicated.
That answer assumes have a basic understanding of operating systems, web technologies, server
technologies, desktop technologies, Kali Linux, Metasploit, Burp Suite, Wireshark, and let’s not
forget about the most important of all – the fundamentals of networking. Really, this list goes on.
And frankly, it never ends.

If I were advising a beginner -- get real world experience with networking, systems administration,
desktop and server software, and learn to write some code. The problem is – that’s boring. I love to
hack and I can stay up all night hacking. Staying up all night studying networking fundamentals…
not really my idea of fun and I do this stuff for a living.

The goal of this book is to guide the reader through some basic tools, attacking our victim server one
step at a time, with the ultimate goal of gaining root by the end. I feel like that would be enough of a
catalyst to embolden the reader to endure the more mundane educational components that will help
build a well-rounded hacker.

5

HACKING 101: WHO AM I

For the purpose of this book, my name is V1NC3NT. Not because it’s my super, anonymous,
hacker name -- I’m neither a super hacker nor am I anonymous. At Starbucks they call me Victor
which isn’t my real name either but I’m waiting for the day that someone remembers the name and
calls it aloud as if we’re old friends. That will truly be my 15 minutes of fame and I will bask in its
glory.

Truthfully, I am nobody and I’m unremarkable. I haven’t spoken at any conferences, I haven’t written
any exploits, nor am I the developer of any noteworthy hacking tools. If this book sees the light of
day, I will be the author of exactly one self-published book.

All that being said, technology has been a part of my life for the last 30 years and I hold numerous
certifications -- some of which are in technologies that no longer exist. Several years back, my focus
switched from the traditional avenues of technology to information security and although I frequently
suffer from imposter syndrome, I'm probably not the guy you want roaming around on your network.

In the end, if I get to choose what I want to be, I’d love to be the guy that wrote a book that helped
people get into hacking. Hopefully you’ll buy that book when it comes out but for now, you’re stuck
with this one.

6

HACKING 101: BLUEPRINT

Without ruining the concept of what I’ve written and the purposeful way I’ve written it, I want to make
sure you have a path to follow. The idea is to have you learn a tool or a technique and then apply
that knowledge to the vulnerable server.

If at any time during this process, you feel absolutely stuck, the last chapter has a complete
walkthrough to give you a hint. Before you move to a hint, think about the lessons you’ve been
taught and recognize that the tool or technique you’ve just learned is what you need to move
forward. If you’re still in need of that hint, go for it.

The chapters in this book are in order for a specific reason. We start off with Nmap because we
need to learn how to enumerate what ports are open on the server.

Next, we’ll see what we can learn from the resources running on those ports. The path forward
might not be obvious just yet but we’ll move on to next chapter where you’ll learn about Cewl and
building word lists.

When you’re finished with Cewl, if the water is still muddy, don’t fret, your vision may become clearer
when you’ve completed the chapter on Brute Force Attacks. Get to the end of that chapter then
think about what knowledge you’ve learned and how you can apply it to what you’re facing with the
server.

Upon overcoming that obstacle, the chapter on Hash Cracking will become essential for the next
step. If all goes as planned, you’ll have that low privilege shell on the server.

The chapter titled The Weakest Link is where you could encounter some ambiguity. The biggest
personal obstacle for me with hacking is that it’s not always paint by numbers. I liken it to
assembling a jigsaw puzzle with pieces from different puzzles. I give you this piece from this puzzle,
that piece from that puzzle, and now I need you to assemble it to make it whole masterpiece. That is
the essence of hacking as I see it.

At the end of The Weakest Link chapter, you will have everything you need to root this server.
When you encounter a new piece of the puzzle, think about what you have and what you’ve learned.
It all fits together, I swear.

Good luck!

7

HACKING 101: NMAP

I worked with a guy who went onsite to install a router with information he was given from the local
Internet Service Provider (ISP). When he arrived onsite and he attempted to install the router, he
was unable to connect to the Internet. He and I went back and forth about the possible issues and
after a few minutes, I asked him to text me the information he was given by the ISP. When I looked
at the message, it became immediately clear as to what was causing the problem.

Not using the actual IP information, this will suffice:

IP Address: 255.255.255.0
Subnet: 192.168.168.10
Gateway: 192.168.168.1

You could look at this information and the problem might be completely obvious to you – or perhaps
not. The point being that to call this post a primer on hacking would be to ignore the entire
foundation where the majority of this work exists – the network.

The other day, someone asked me how to get into pentesting and I suggested that in order to build a
solid foundation, one would want to learn basic networking. Without that knowledge, one could
move forward but a lot of what is discussed could take an abstract form. Eventually those pieces will
sort of fit together but they will solidly interlock if that foundational knowledge of networking already
exists.

As I now shift the focus to Nmap, the very first scan we are going to perform references a /24 subnet
which means something. If this were a slightly larger network, we might scan a /23 subnet which
means something else. Lacking this knowledge won’t prevent you from performing the scan, or
understanding the output, but I could easily see someone missing an entire set of hosts if the subnet
mask was 255.255.254.0 instead of 255.255.255.0

I’m done beating that dead horse. Moving on…

nmap –sP –PI 192.168.86.0/24

The –sP flag tells Nmap we’re not performing a port scan.
The –PI flag tells Nmap we’re performing an ICMP scan.
192.168.86.0/24 tells Nmap we’re scanning our entire subnet.

In layman’s terms, we’re scanning our local network using a ping request and when that request is
received by a host, it will reply back to us.

8

The output looks like this:

root@c2:/recon# nmap -sP -PI 192.168.86.0/24

Starting Nmap 7.70 (https://nmap.org) at 2019-04-22 06:50 PDT

Nmap scan report for u18.lan (192.168.86.175)

Host is up (0.00075s latency).

MAC Address: 6D:5E:90:35:25:81 (Unknown)

Nmap scan report for c2.lan (192.168.86.99)

Host is up.

Nmap done: 256 IP addresses (1 hosts u) scanned in 4.11 seconds

In bold, I’ve identified the target.

What we do next is a matter of preference due to the number of flags available to us in Nmap. The
most basic scan we could perform looks like this:

root@c2:/recon# nmap 192.168.86.175

Starting Nmap 7.70 (https://nmap.org) at 2019-04-22 07:02 PDT

Nmap scan report for u18.lan (192.168.86.175)

Host is up (0.00029s latency).

Not shown: 998 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

MAC Address: 6E:5D:90:36:26:82 (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 0.35 seconds

I’ve highlighted the two ports discovered with this basic scan.

9

If we add some flags, we can dig a little deeper:

root@c2:/recon# nmap -sV -sT -O -A -p- 192.168.86.175 -oN output.txt

Starting Nmap 7.70 (https://nmap.org) at 2019-04-22 07:03 PDT

Nmap scan report for u18.lan (192.168.86.175)

Host is up (0.00054s latency).

Not shown: 65533 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)

| ssh-hostkey:

| 2048 51:56:ec:6b:c5:cd:ef:ba:5f:fb:00:d4:cf:78:b0:b9 (RSA)

| 256 e8:95:f1:37:fc:6f:62:7a:08:ff:7c:39:2c:87:df:39 (ECDSA)

|_ 256 fc:1e:12:5a:76:6c:52:7e:ae:06:31:29:c5:cb:3f:08 (ED25519)

80/tcp open http Apache httpd 2.4.29 ((Ubuntu))

|_http-generator: WordPress 4.7.13

|_http-server-header: Apache/2.4.29 (Ubuntu)

|_http-title: wordpress – Just another WordPress site

MAC Address: 6E:5D:90:36:26:82 (Unknown)

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4

OS details: Linux 3.2 - 4.9

Network Distance: 1 hop

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

TRACEROUTE

HOP RTT ADDRESS

1 0.54 ms u18.lan (192.168.86.175)

OS and Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 18.97 seconds

The –sV flag tells Nmap we want to retrieve service and version information.
The –sT flag tells Nmap we want to perform a TCP connect scan.
The –O flag tells Nmap we want to perform OS detection.
The –A flag tells Nmap we want to perform an aggressive scan. I should also point out that when we
view this option in the man pages, we see the following:
“However, because script scanning with the default set is considered intrusive, you should not use -
A against target networks without permission.”
The –p option is used for choosing ports or port ranges and the –p- options tells Nmap to scan all
ports.
192.168.86.175 is our target.

10

And finally, the –oN flag tells Nmap we want to save our scan to an output file –> output.txt

It’s worth pointing out that we are ONLY scanning TCP ports.

If this were a DNS server which runs on UDP port 53, we could scan using the following:

root@c2:/recon# nmap -sU -p 53 192.168.86.175

Starting Nmap 7.70 (https://nmap.org) at 2019-04-22 07:32 PDT

Nmap scan report for u18.lan (192.168.86.175)

Host is up (0.00085s latency).

PORT STATE SERVICE

53/udp closed domain

MAC Address: 6E:5D:90:36:26:82 (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 0.26 seconds

The –sU flag tells Nmap we want to scan UDP ports.

Since this is not a DNS server, the response shows port 53 is closed. But in our initial scan, we
were ignoring UDP ports altogether.

Moving on to what we learned the two separate scans, in our first scan, we see:

80/tcp open http

But in our second scan we see:

80/tcp open http Apache httpd 2.4.29 ((Ubuntu))

|_http-generator: WordPress 4.7.13

|_http-server-header: Apache/2.4.29 (Ubuntu)

|_http-title: wordpress – Just another WordPress site

By calling those additional flags, we uncover more information and not only do we learn that port 80
is open, we also reveal the following:

Ubuntu Server
OS details: Linux 3.2 - 4.9
Apache server, version 2.4.29
WordPress, version 4.7.13

The next steps we take wouldn’t necessarily be driven by any of this information but I have some
ideas in my head as to where I might be headed. In other words, I’m staring at WordPress but I
won’t let it distract me from completely enumerating the web port to gather all of the pieces to this
puzzle.

11

HACKING 101: PASSWORDS AND WORDLISTS

The stock Kali Linux distribution contains a number of password and word lists. The most notable
password list, RockYou, is from a breach that occurred in 2009. The biggest revelation to come
from this breach was the frequency of the most basic passwords. The top five most used passwords
in RockYou are:

123456
12345
123456789
password
iloveyou

In total, there were 32 million passwords in the RockYou breach but in the Kali version of this list,
there are only 14 million passwords.

On a brand new installation of Kali Linux, you can find the RockYou password list
under: /usr/share/wordlists/rockyou.txt.gz

To extract this list: gzip -d rockyou.txt.gz

When the file is finished extracting, we should end up with: rockyou.txt

The total size of this file is 134MB -- of text. It's huge. As I mentioned previously, it contains over 14
million passwords. To use this file in its whole form is a last resort but we can easily create smaller
lists using the head command. The RockYou list is in order of most used passwords and if we
use head to extract the first 10, first 100, first 1000, or first 10000, we are literally getting the most
popular in order.

12

Depending upon the specific situation, the speed at which we process through our list will vary
greatly. If we're using the entire RockYou list for cracking a sha512crypt hash using a basic
Graphics Processing Unit (GPU), we could be waiting for a very long time. This is a situation where
we might use the top 100, top 1000, or even top 10000 before we resort to the entire list. If the hash
is MD5, the process will move along much faster and we might want to start with a larger list. I have
multiple lists already generated and I decide which list to use based on the situation.

Word lists really aren't much different and we can find those under: /usr/share/wordlists/[SOME
DIRECTORY]

The two most common locations:

/usr/share/wordlists/dirb
/usr/share/wordlists/dirbuster

13

There are some pretty solid lists in both of these directories and I like to combine them into one
larger list. Again, like the RockYou list, bigger is not necessarily better but if I'm looking for the
sledgehammer, I'll go for the combined list.

Up until now, I've been talking like password lists and word lists are separate entities but they are
essentially the same -- they are lists. For the sake of convenience, and not necessarily betterment,
we are using these stock lists. Taking a more targeted approach might be a better option.

Indulge me for a moment as I go off on a tangent --

IBM's first CEO was Thomas J. Watson. If you look throughout IBM, you will see the name Watson
appear in a number of forms. A Google search for "IBM Watson" brings up their "question-
answering computer system". I first learned of the name Watson from ns.watson.ibm.com which is
an IBM name server I used for many years because it was very reliable -- that is until it stopped
taking public DNS requests.

The point being that it's not uncommon to see words and names recycled throughout a
business. Server names, directory names, and passwords, could all be names gleaned from a
company website. With the name Watson being so prevalent throughout the IBM world, how many
passwords do you think had some variation of Watson?

Back on point --

At the very least, if I'm fuzzing or performing a brute force attack, among the lists I'm using is one
that I've generated from the company's public facing sites uing Cewl:

14

cewl -w fakedomains.txt -d 3 -m 6 https://www.fakedomains.com

-w = output file
-d = depth
-m = minimum word length

Using wc, we count the lines in our list for a total of 4162 words. When we look at the first 20, it
looks like a word list! We can mutate this list in a number of ways but for now, let's stick to the
basics. When I grep through my largest word list and RockYou, I'm already finding words in our
targeted list that do not appear in either of the larger lists. 4162 goes a lot faster than 14 million!

* Just to be clear, replace fakedomains.com with YOUR target domain.

15

HACKING 101: BRUTE FORCE ATTACK

I assume when I say "Brute Force Attack" that we all know what I'm talking about. Just in case --
let's pretend we have a lock, a pocket full of keys, and we try each key in the lock until we exhaust
the collection of keys or we are able to open the lock. Now let's say the lock is a login, the pocket
full of keys, the wordlist, and the act of trying the keys is some sort of application to perform the task.

I'm not sure that helps or hurts so I'll move on to what we're attempting to do in our first example.

I've setup a user on an Ubutnu server and that server has SSH access enabled. Our victim user
is: bforce and the password is: 123456

The first tool we're going to use is Hydra.

hydra -L ./users.txt -P /usr/share/wordlists/top100.txt -v 192.168.86.192 ssh -t 4

-L = user list
-P = wordlist
-v = verbose
-t = threads

Our wordlist is pretty small but as you can see, we retrieve the password. With a larger list, this can
take a LONG time.

Another tool for performing the same task is Ncrack.

ncrack -vv -U ./users.txt -P /usr/share/wordlists/top100.txt -T 5 192.168.86.192 -p ssh

-v = verbose
-vv = (which we're using above) extra verbose
-U = users list
-P = wordlist
-T = threads
-p = service

16

Again, the result is the same, we're just using a different tool Different tools do different things and
some work better than others for certain tasks.

Yet another tool for performing the same task, Medusa.

medusa -h 192.168.86.192 -U ./users.txt -P /usr/share/wordlists/top100.txt -M ssh -f

-h = host
-U = users list
-P = wordlist
-M = module (service)
-f = stop scanning after valid user and pass combo discovered

And yet again, we successfully get the password.

Technically, this is a 101 lesson and Metasploit is suite of tools which could be an entire series all on
its own. But given that one of the tools I'm personally going to use is Metasploit, here is yet another
tool for accomplishing the same task.

17

Some things I'd like to point out that I've changed from the default options view:

BLANK_PASSWORDS = true
PASS_FILE = points to my wordlist
RHOSTS = points to our victim
STOP_ON_SUCCESS = true
USER_AS_PASS = true
USER_FILE = user list
VERBOSE = true

I think between the names and the descriptions, you can get an idea as to what these do.

Not surprising, Metasploit also finds the password.

With these tools, we can perform this same type of operation on a variety of different services but we
can also brute force web forms.

This is a simple login form, our username is: admin and our password is: p@ssword

18

I'm going to use Hydra to perform this attack but we need some additional information before we
begin our attack. If we're using a Kali install, we can use Inspect Element to grab those missing
pieces. Otherwise, we can View Source and retrieve that information from the source code. Using
Inspect Element, if we right click on the username field:

19

We're looking for the "input name". In this case: user

Now we're going to perform this same task for the password field:

20

The input name for the password field is: pass

One final piece of information, we need the error message in order to let Hydra know the difference
between pass and fail. When we enter incorrect credentials, we see:

21

Now that we've retrieved this information, we can complete our syntax:

hydra -l admin -P /usr/share/wordlists/top50.txt 192.168.86.192 http-post-form

'/login/login.php:user=^USER^&pass=^PASS^:F=Wrong'

-l = username (instead of -L user list)

Following http-post-form, we're pointing to the location of the login page: /login/login.php

Next, we're calling the two names we retrieved: user and pass

^USER^ and ^PASS^ are placeholders for the -l (username) and the -P (wordlist)

And finally, F=Wrong is our failure message.

22

We retrieve the password and we're going in for the kill:

Or not. :)

In the above example, I used a very SIMPLE login form. But what about something a little more
complex like Joomla?

Our username is: admin and our password is: p@ssword

23

Using inspect element, we're attempting to retrieve the same input field information as with the
previous attack.

24

Username = username

25

And password = passwd

26

We get our error message, we form our hydra syntax and when we perform our attack:

We fail. For quite a few reasons actually. For starters, we need more than just the names for
username and password. Rather than dive into a rabbit hole, we can save that for another day,
we're going to use Nmap to solve this problem for us.

In addition to scanning ports, there's an entire collection of scripts built upon the Nmap Scripting
Engine (NSE). Among that collection, there's a script specifically for brute forcing Joomla:

27

nmap -sV --script http-joomla-brute --script-args

'userdb=./users.txt,passdb=./top50.txt,http-joomla-brute.hostname=u14s,

http-joomla-brute.threads=3,brute.firstonly=true' 192.168.86.192

-sV = probe open ports
--script = we're calling a script
--script-args = script arguments
--userdb = user list
--passdb = wordlist

We retrieve the credentials and we're going in for the kill:

28

Now maybe you're thinking all of this brute forcing is going unnoticed but you would be
incorrect. When we look at the Apache log files, we see the following:

29

I consider myself a very fast typist but I'm not SO FAST that I can enter a username and password
that many times in just three seconds.

We can easily defend against this type of attack by parsing the log files for that exact type of
behavior.

As a final thought, here's the reality of brute forcing --

It's highly unlikely you're going to be able to perform such a loud attack without either getting blocked
or drawing attention to yourself. That being said, there are plenty of devices and applications that
will let you brute force attack without any sort of defensive measures to stop you. Netgear and TP-
Link are two that come to mind. Heck, Joomla just let us do it and this is a current version install I
just downloaded.

The key thing that I'd like to point out is that getting the syntax correctly takes a bit of wrangling and
it's a lot easier to attack something in a controlled situation. In other words, if I'm pentesting a
Joomla site, I'll install a Joomla site in my control in order to KNOW the username and password. In
the controlled environment, if my attack fails, I know the syntax is probably wrong. This controlled
environment is not limited to brute forcing, this is something worth doing whenever dealing with an
unknown situation.

30

HACKING 101: HASH CRACKING

Penetration testing, red teaming, hacking, being enthusiastic about information security, or whatever
else you want to call it -- to some degree, it's an art form. A significant portion of this type of work is
non-linear and it requires a creative mind to piece together the puzzle. While the example I'm about
to give seems relatively straightforward, there are other aspects of hash cracking that require an
artistic imagination and I've seen challenges where I was amazed by the creativity of both the
challenger and the participant. Today, we're keeping it simple but this is a real-world situation.

While scanning a host, we uncover the following:

I find it amusing that even Nikto is like -- "Databases? Really??"

Don't laugh though, I was working with a client who used a third-party web developer and when the
developer packaged up the site, the files and the SQL database were both contained in the
package. I loaded the site into the development server on our end and when I scanned the site, I
found another copy of the database sitting in a folder in the web root directory -- like you see above.

31

Pointing our browser to the /database folder, we find:

We download the laundry.sql file, open it up and we see:

We have a username and a hashed password.

32

There are a couple of ways to determine the type of hash, the first available to use on Kali is Hash-
Identifier:

33

Hash-identifier thinks this is SHA-1. If I don't know the hash mode, or in the event we're not getting
an exact match from Hash-Identifier, we can also use the example hashes listing on the Hashcat
website:

Typically, I'm going to use Hashcat to crack my hashes, there are other tools for other situations
though and Hashcat is not the only game in town. In this scenario, I'll save the hashes into a text file
to crack with Hashcat. As a sanity check, using the Hashcat example, I might copy the example
hash into the same file to see if the length of the hash example matches my hash length.

34

Once I have an idea as to hash type, I note the hash mode and then I move over to my Windows
cracking machine. Couple of things worth pointing out. I run Kali in a VM and hashcat gives all sorts
of error regarding the lack of Graphic Processing Unit (GPU). I've never really bothered to invest
much time in solving that problem because long ago, I purchased a high-end gaming card to speed
up the process of cracking and that's done on a Windows platform.

On less complex hashing algorithms, it's not all that time consuming to crack a hash but when you're
using a more difficult hashing algorithm and a large password list, it can take a LONG
time. Basically, Hashcat reads a word in the wordlist, encrypts it using the same
encryption algorithm to generate a hash and then it compares that generated hash to our victim
hash. If it's not a match, it moves to the next word. If the hashing algorithm is complex, it takes a
while. A graphics adapter with a fast GPU can encrypt faster.

hashcat64.exe -m 100 laundry.txt rockyou.txt

-m = mode
100 = hash mode
laundry.txt = our victim hash
rockyou.txt = located on the Kali linux install under: /usr/share/wordlists/rockyou.gz, extract to
rockyou.txt

35

I moved the extracted version over to my cracking machine and when we set Hashcat loose:

We see that we've cracked the hash in two seconds and the password is: 1234

We already know the username is: admin

Moving over to the login page, we enter:

admin : 1234

36

37

And we get logged into the management page:

As a final thought, there are some sites that do cracking for free and for pay. Crackstation is one
that I've used. Although, I should say that I've had mixed success with hashes it should have
cracked. Another that I've heard about but haven't used it hashes.org but I think that could be a pay
service.

Using Crackstation, we enter our hash, prove we're not a robot and when hitting submit:

38

Again, as I mentioned previously, this is just scratching at the surface but the more you play around
with simple hashes, the more this makes sense. Collecting other wordlists, consolidating them into
bigger or smaller lists, can also help fine tune your cracking.

39

HACKING 101: THE WEAKEST LINK

You’ve run your Nmap scan and you found the open web port. From the open web port, you’ve
worked your way into the system and you have a low privilege shell. Now what?

The enumeration process starts all over again.

There are more than a few privilege escalation scripts as well as written documents that will aid in
this process but only if you’re familiar with the operating system. If you’re hunting for that needle in
the haystack but you don’t know what a needle looks like, how will you find it? Recognizing that
needle will come with time and I’m not trying to say you shouldn’t use those scripts. Do use them
but realize it could be overwhelming until you’re a bit more seasoned.

For the 101 series, let’s focus on something a little more obvious. People are the weakest link in this
chain and we are predictable to a fault. You don’t need to understand Windows, Linux, or Mac OS
extensively, you just need a few tools to hunt for the trail of human errors.

Let me ask you this -- have you ever used the same password for two separate logins? I’ll go out on
a limb here and say the answer is yes. Let’s take that thread and pull on it for a bit.

How did you end up with your low privilege shell? Did you uncover credentials? Try to use those
same credentials elsewhere. As a low privileged user, we can’t read the /etc/shadow file which
contains password hashes because we don’t have the appropriate permissions but we can
read /etc/passwd which contains user accounts.

40

Make a file with a list of all of the users you’ve uncovered and another file with a list of all of the
passwords you’ve uncovered. If you brute force, try every password with every username.

Maybe you only have one username and password and nowhere to go. Or maybe you don’t even
have that and you ended up on the system through some other avenue. If the system you’ve
compromised is a web server, is it running a database server? Can you find database credentials?

WordPress stores its credentials in wp-conifg.php

and Joomla stores its credentials in configuration.php

41

– the location of these files will vary but typically, you’ll find them under: /var/www/html/

If I’m familiar with the system I’ve compromised, a WordPress site for example, I’ll go straight to wp-
config.php, retrieve the credentials and use those credentials to login to MySQL. From there, I will
list all of the databases...

...and hunt through each database...

42

...for more credentials or more hashes to crack.

If I’m not familiar with the system, I’ll use a broader approach because I won’t know where to find
database credentials or if I’ll find them at all. The Linux grep command is used to search for text.
We can use grep directly or we can pipe to grep for matches. When dealing with an unknown
environment, I might do something like:

43

I'm using grep to search recursively, while ignoring the case, and I'm asking it to return file matches
for files that contain my search pattern. In this case, my search pattern is "password". My current
location in the file system is /var/www and I could have spelled that out but it's less characters doing
it the way I did above.

With a low privilege shell, moving forward could take form in any number of ways but at a very basic
level, realize we’re dealing with humans. What do humans do? Humans: use weak passwords,
reuse passwords, store passwords in their profile folders, and humans email passwords back and
forth. In order to move forward, maybe we can brute force, credential stuff, hunt through profile
folders, or hunt through emails.

44

HACKING 101: VULN SERVER 101 WALKTHROUGH

Bringing all of the pieces together, we take what we’ve learned and attack our victim machine.

Kicking off with Nmap:

45

We find three open ports. Because Joomla sounds juicer, I'm headed there first:

46

Checking out the other open web port:

47

We find a login. We see how it responds to any set of credentials:

We feed it root and root, it responds with:

On the surface, we might not think much of this error but it's a tell. "Incorrect username!" means that
maybe we can uncover a correct username!

48

We try another pair of credentials:

Using admin and admin, we get:

Excellent! We've just learned that admin is the correct username.

49

Perhaps we can leverage cewl to generate a list of passwords from that Joomla site running on port
8080:

Using the wc command, we count 371 words in our wordlist. Using the head command, we take a
peek at the top just to make sure things look like they should.

Next, we need are the field names for username and password fields:

50

With a username, password list, and field names, we can now attempt to brute force the login with
Hydra:

When Hydra completes, we uncover the password: Consonantia

Moving to the login form:

Success!

51

We are logged in:

With only one real option, we check out the Profile page:

We find a username and some type of hash.

52

We move to hash-identifier:

53

I like, and use, Hash Identifier often but it does not provide the Hash Mode.

Moving to HashID:

We learn nothing new about the hash type but we do learn the Hashcat hash mode.

Using the echo command, we copy the hash into a txt file for cracking.

For the sake of this walk through, I'm staying on my Kali virtual machine to launch hashcat but
because I'm using a virtual machine, Hashcat won't run:

The --force command also does not work for me. I'm providing the screenshot above for the syntax
one would use on Kali.

54

To crack this hash, I'm moving over to my Windows machine:

55

When Hashcat finishes, we uncover the password: 123123123

With complete credentials, we SSH over to the victim machine:

56

Using the cat command, we take a quick look in /etc/passwd to uncover other potential users:

We see our current user and we learn of yet another user: bossman

57

This server is running a Joomla site and I could go directly to configuration.php in the Joomla root
directory: /var/www/site

Using the head command, we can retrieve the first 20 lines of the file which reveals the username
and password for MySQL. We can also use the grep command to search for two strings
simultaneously. Whichever method we use, we end up with MySQL credentials from the Joomla
site. Alternatively, there's another application running on the server, the Login page. If we use
the grep command in a different manner, we can search through the files in the directory for the
string, "password":

We find the same credentials.

58

We attempt to login to MySQL:

We are successfully able to login to MySQL and when we issue the show databases command, we
find a database titled "passman" which soundslike Password Manager.

59

Let's take a look:

This appears to be some sort of crude password manager. When we view the passwords table, it
appears as if the user is using the same password on multiple accounts.

Taking the hash over to HashID:

Another SHA1 hash.

60

Saving the hash into a text file, we move over to the hash cracking machine:

61

Hashcat cracks the hash.

Here's what we know so far:

1. We've uncovered a local user, "bossman".
2. We've found a password manager with multiple outside accounts for bossman, all using the same
password: iloveyou

Using the su command, we attempt to switch users to bossman:

When we login as bossman, we issue the sudo -l command which is where we learn that bossman
can execute commands on behalf of root. We take a quick look at bossman's home directory for the
tell tale sign, .sudo_as_an_admin_successful. We then execute sudo su which invokes the root
account. Double checking our ID, we confirm that we are root. #gameover

62

We move into the home directory for root:

We retrieve the flag.txt file.

That looks like a hash!

63

Moving to HashID:

We find an MD5 hash.

64

Moving over to Hashcat:

65

And there you have it. Now the game is really over. Thanks for playing -- hope you enjoyed!

